THE FUNCTION OF D-ARABOASCORBATE IN THE DIRECT OXIDATION OF GLUCOSE

by

J. DE LEY

Biochemical Laboratory, Veterinary College, State University, Ghent (Belgium)

It could be deduced from the results of McNair Scott and Cohen¹ that d-araboascorbate (possibly as the phosphorylated derivative) might be a long sought intermediate in the oxidative decomposition of d-gluconate-6-phosphate into pentose phosphate, this reaction mechanism being largely unknown.

We have studied the oxidation of D-araboascorbate by testing cells of a strain of Aerobacter sp., possessing the enzyme system for the direct oxidation of glucose^{2,3}.

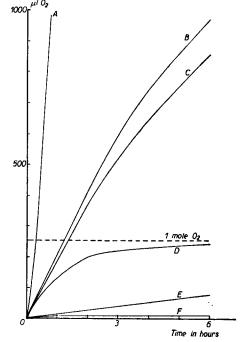
Fig. 1 demonstrates that these bacteria oxidize D-araboascorbate only extremely slowly and to a limited extent (about 10% of the theoretical maximal oxygen uptake), which is probably due to

some impurity. In phosphate buffer the auto-oxidation proceeds with uptake of 1 mole O_2 , beyond the formation of dehydro-D-araboascorbate (curve D). This auto-oxidation is greatly inhibited by the presence of heat-inactivated cells (30 minutes at 100° C) (Curve E and F). These results make it highly improbable that D-araboascorbate or its phosphoderivative is an intermediate for this part of carbohydrate metabolism. Curve A shows the vigorous respiration of a substrate (gluconate) which gives rise to intermediates of the direct oxidation scheme.

When supplied as sole carbon source to a synthetic culture medium, D-araboascorbate hardly provokes growth of several *Aerobacter* strains and one *Klebsiella*.

Fig. 1. D-araboascorbate as a substrate for respiration by Aerobacter sp. Each Warburg flask contains: 0.5 ml M/15 phosphate buffer pH 7; 1.4 ml bacteria (25 mg dry weight), heat-inactivated bacteria or water, as stated below; 0.1 ml M/10 substrate or water as stated below.

Curve A: buffer, bacteria, Na gluconate


Curve B: buffer, bacteria, Na D-araboascorbate

Curve C: buffer, bacteria, water

Curve D: buffer, water, Na D-araboascorbate

Curve E: buffer, heat inactivated bacteria, water

Curve F: buffer, heat inactivated bacteria, Water araboascorbate.

The metabolism of dehydro-D-araboas corbate is more complex. At pH 7 the lactone ring is opened, yielding a reducing substance which is theoretically 2,3-dike tomannonate. Chromatographic analysis according to Mapson and Partridge 4 shows in addition the presence of a substance, reducing cold silver nitrate-ammonia, with an R_F of 0.54, representing an unidentified reduction. This mixture of at least three substances is respired by the bacteria with uptake of about 1 mole $\rm O_2$, followed by a further slow oxygen uptake. These results point to a pathway of dehydro-D-araboas corbate metabolism which is seemingly quite unrelated to the direct oxidation system.

We are indebted to the Nationaal Fonds voor Wetenschappelijk Onderzoek for a grant.

REFERENCES

¹ D. B. McNair Scott and S. S. Cohen, J. Biol. Chem., 188 (1951) 509.

² J. DE LEY, Nature, 168 (1951) 515.

³ J. De Ley, Bull. Ass. Dipl. Microbiol. Fac. Pharm. Nancy, (1952) 1.

L. W. Mapson and S. M. Partridge, Nature, 164 (1949) 479.